ALABAMA ASPHALT PAVEMENT ASSOCIATION

ALABAMA ASPHALT PAVEMENT ASSOCIATION

Alabama Asphalt Pavement Association 630 Adams Avenue

Montgomery, AL 36104

334/834/5314 (Phone) 334/834/5537 (Fax)

E-mail: alapa@bellsouth.net

Web site: www.alasphalt.com

2024 ASCE MONTGOMERY BRANCH MEETING

USING PAVEXPRESS TO DESIGN ASPHALT PAVEMENTS

MEL MONK, P.E. – EXECUTIVE DIRECTOR, ALABAMA ASPHALT PAVEMENT ASSOCIATION

DESCRIPTION OF SESSION

The design of a new asphalt pavement or an overlay of an existing pavement must account for the subgrade conditions, traffic volume, traffic loading and environmental conditions. With asphalt overlays, the condition of the existing pavement must be known. PaveXpress software integrates all of these considerations in an easyto-use stepwise process.

LEARNING OBJECTIVES

- 1. Learn the key factors that must be evaluated for a proper new or overlay pavement design.
- 2. Learn to use PaveXpress for designing pavements.
- 3. Understand the economic consequences of over- or under- designing a pavement.

BASICS OF PAVEMENT DESIGN

- New Pavement Structures
 - New Alignments
 - Capacity Improvements
 - Sub-Divisions

- Maintenance and Rehabilitation
 - Reconstruction
 - Full or Partial Depth Rehabilitation
 - Structural Overlays
 - Functional Overlays

Things You Need to Know

Traffic

Soils and Subgrade

Expectations

Traffic Considerations

CARS

They do not count! 11,900 cars = 1 truck (18 wheeler)

TRUCKS

Extremely critical to know Number of trucks Types of trucks Loadings on axles

BUSES

Can be a silent killer
Often overlooked
Parking lots and bus stops

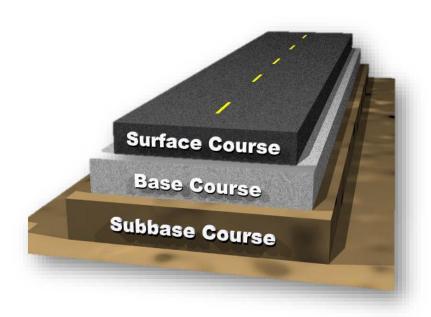
SPECIAL VEHICLES

Non-conventional vehicles Slow movements Extremely heavy tire loads

Soils and Subgrade

- Types of Soils
- Strength of Soils
- Drainage

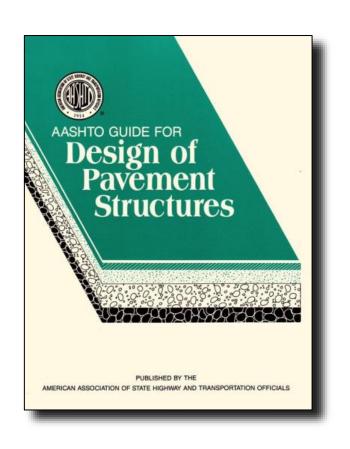
PAVEMENT EVALUATION APPROACHES

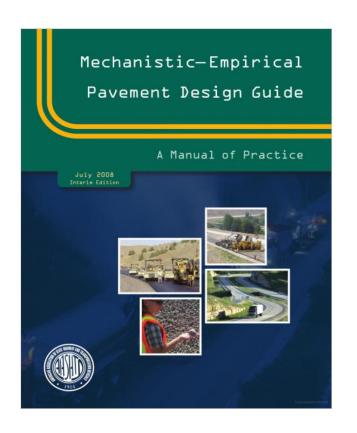


Typical Pavement Structure

SURFACE COURSE

- Typically, 1" 2" thickness
- Placed in the final operation for most projects
- Provides pavement appearance and smoothness


INTERMEDIATE/BASE COURSE


- Typically, 2" thickness for intermediate course
- 3" + thickness for base course
- Provides structure to pavement

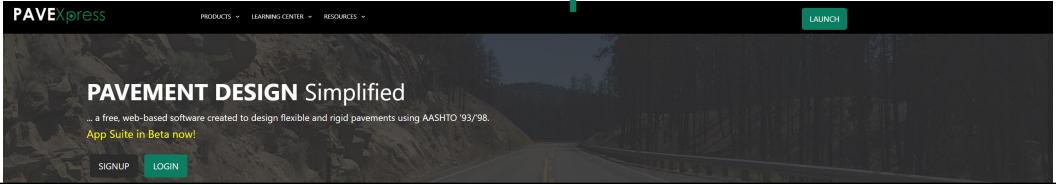

SUBBASE COURSE

- 6" 8" Thickness
- Aggregate or stabilized materials / crushed aggregate base
- Sometimes used for drainage

PAVEMENT DESIGN APPROACHES

WHAT IS PAVEXPRESS?

A free, online tool to help you create simplified pavement designs using key engineering inputs, based on the AASHTO and Perpetual Pavement design processes.


- Accessible via the web and mobile devices.
- Free no cost to use.
- Based on AASHTO and PerRoad design equations.
- User-friendly.
- Share, save, and print project designs.
- Interactive help and resource links.

WHAT DOES PAVEXPRESS DO?

- New pavement designs asphalt and concrete.
- Asphalt overlay designs.
- Life cycle cost analysis (Agency and Realcost).
- Mechanistic pavement design (PerRoad).

PaveXpress

www.PaveXpress.com

AASHTO 93/98 Design

The Design tool uses the empirical AASHTO93 and AASHTO98 equations to design flexible and rigid pavements respectively, including new structures and rehabilitation.

LCCA

The Life-Cycle Cost Analysis (LCCA) tool estimates and compares costs of alternative pavement designs throughout their design life, including both direct (agency) and indirect (user) costs.

Agency Cost

The Agency Cost calculator quickly estimates direct costs implied by a pavement's materials and geometry.

PerRoad

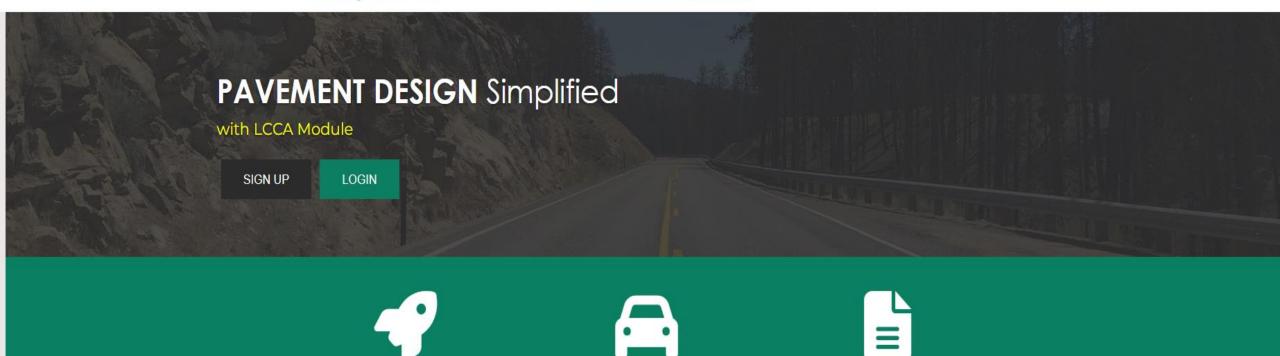
PerRoad supports Perpetual Pavement philosophy and determines pavement design using mechanistic-empirical (ME) concepts.

PAVEXPRESS OVERVIEW

Launch
Start using PAVEXpress now!

PAVEXpress

GETTING STARTED


FAO

ePublications

State-of-the-art technical documents

VERIFIED

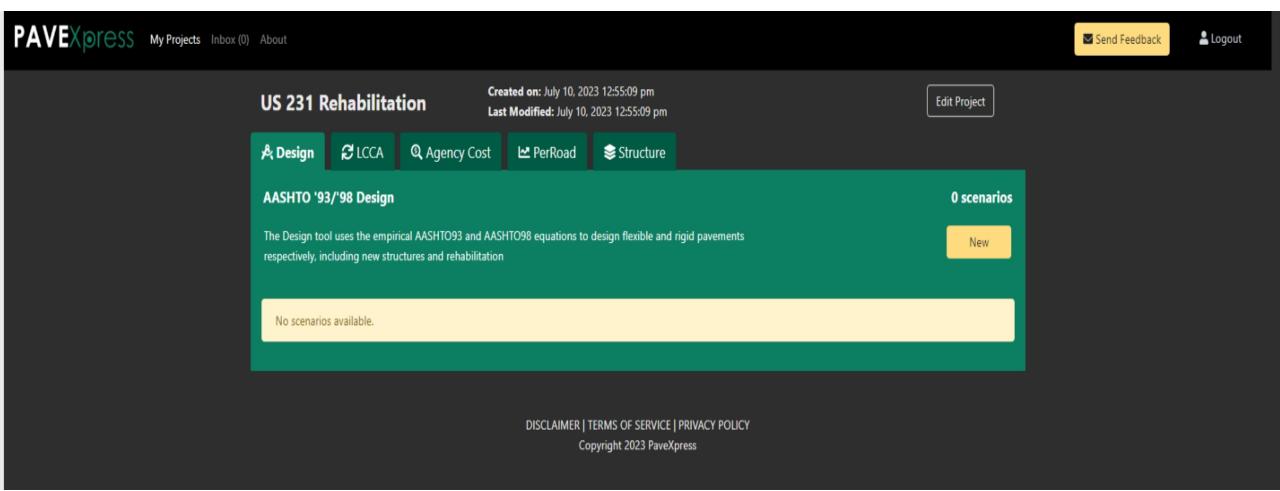
CONTACT

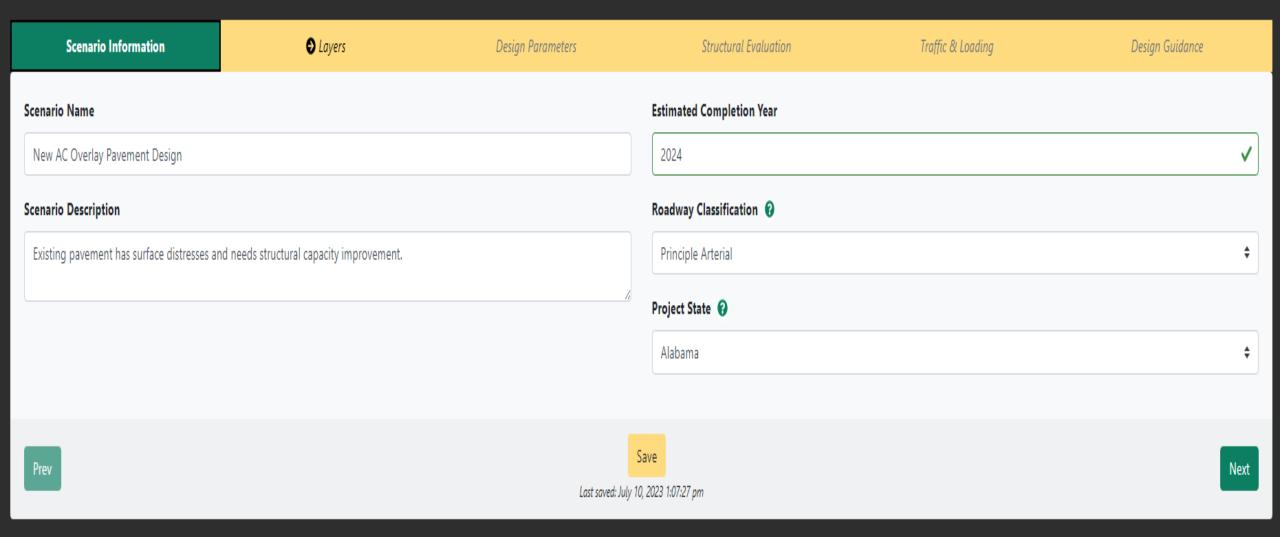
Getting Started

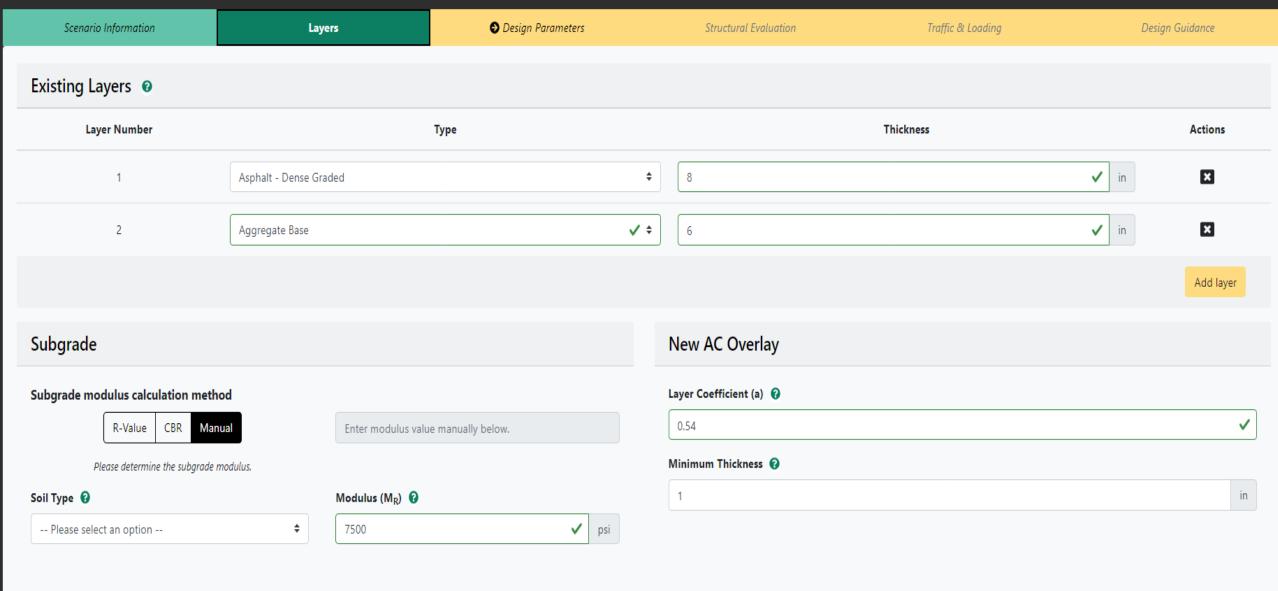

Learn how to put PAVEXpress to use

Available Projects

Name •	Created	Last Modified	Scenarios \$	Actions
US 231 Rehabilitation	July 10, 2023	July 10, 2023 12:55:09 pm	2	

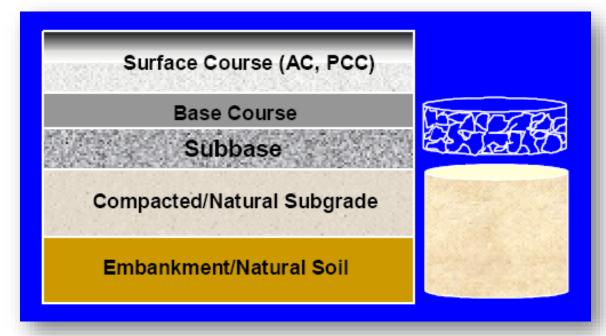

DISCLAIMER | TERMS OF SERVICE | PRIVACY POLICY
Copyright 2023 PaveXpress


NEW PROJECT WINDOW


Project Name	
US 231 Rehabilitation	
Project State 🔞	
Alabama	\$
Project Owner	
Alabama Department Of Transportation	
Description	
The rehabilitation of US 231 in Pike County.	
	//

Save

PROJECT OPTIONS



SUBGRADE CONSIDERATIONS

The most common methods of classifying the subgrade for pavement design are:

- California Bearing Ratio (CBR)
- Resistance Value (R)
- Resilient Modulus (M_R)

SUBGRADE CONSIDERATIONS

The Asphalt Institute publication IS-91 gives the following test values for various subgrade qualities:

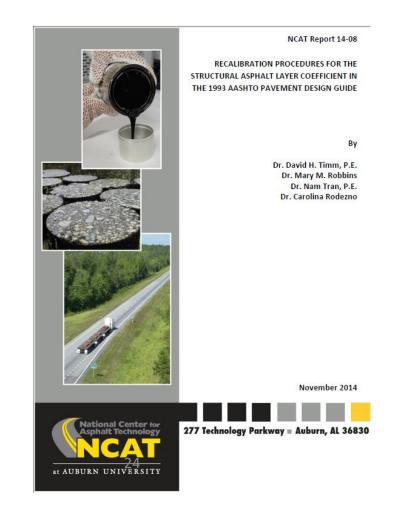
Relative Quality	<i>R</i> -Value	California Bearing Ratio	Resilient Modulus (psi)	
Good to Excellent	43	17	25,000	
Medium	20	8	12,000	
Poor	6	3	4,500	

Note that different design guides will show different ranges for the various subgrade qualities — use engineering judgment when evaluating subgrade design inputs.

LAYER COEFFICIENT CONSIDERATIONS

Average values of layer coefficients for materials used in the AASHO Road Test were as follows:

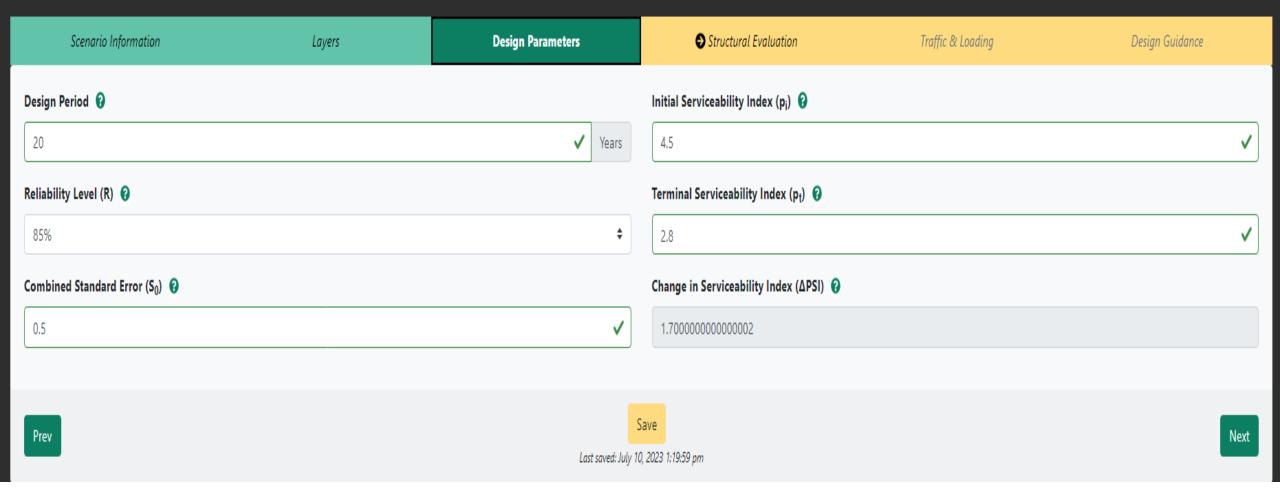
Asphalt Surface Course 0.44

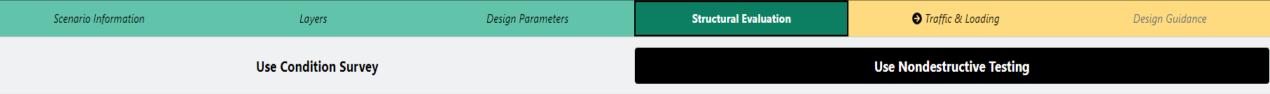

Crushed Stone Base Course 0.14

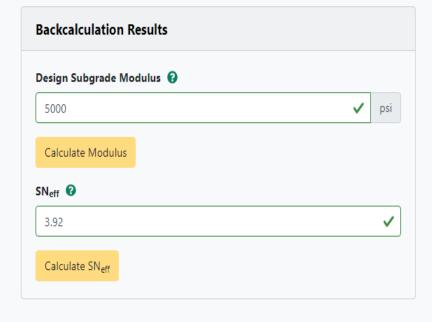
Sandy Gravel Subbase 0.11

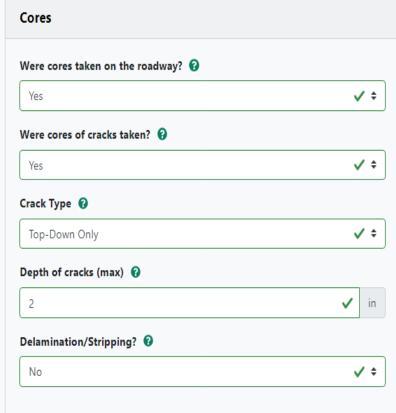
Keep in mind that these values were empirically derived from a road test with one climate, one soil type, and one asphalt mix type.

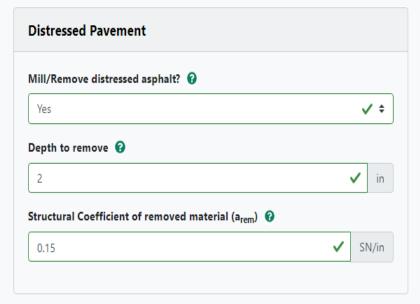
The asphalt layer coefficient used for the Road Test was actually a weighted average of values ranging from 0.33 to 0.83.

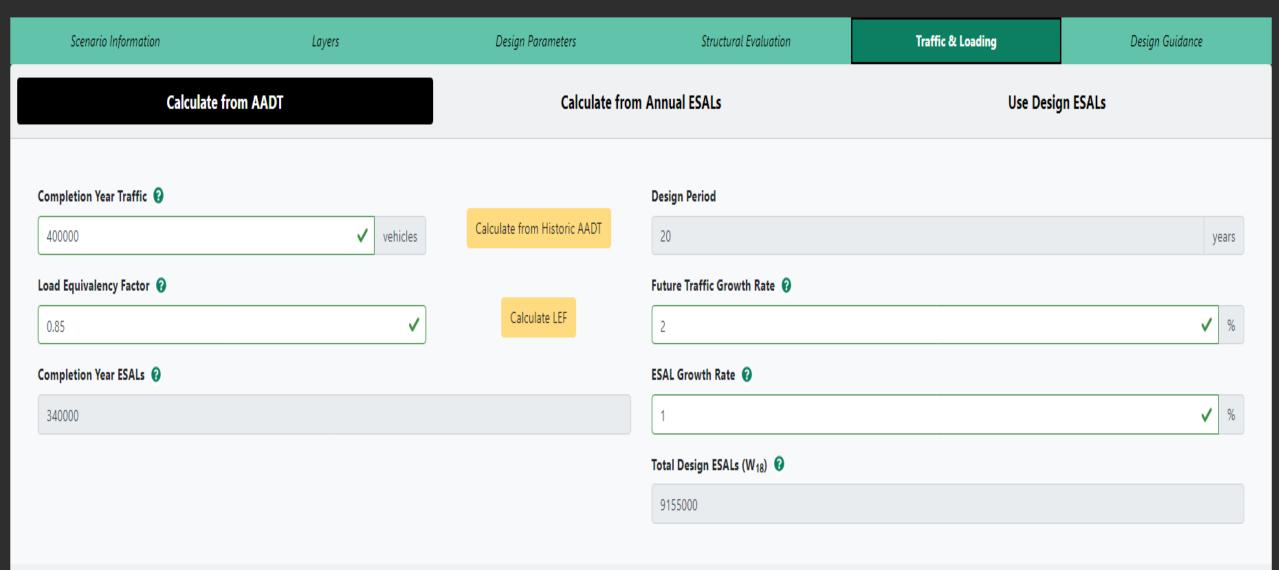

More recent studies at the NCAT Test Track found that for Alabama, an asphalt layer coefficient of 0.54 better reflected actual performance.




US 231 Rehabilitation




Metric | Imperial



WHY CORE CRACKS?

Delta Servicability Index (ΔPSI): -1.70000000000000002

Total Design ESALs (W₁₈): 9155000

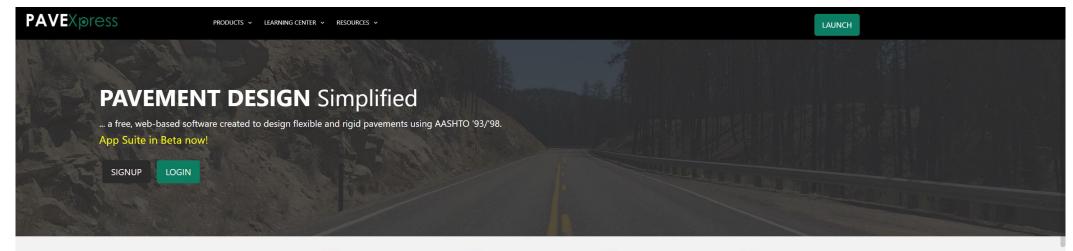
Design Guidance

Scenario Information Design Parameters Structural Evaluation Traffic & Loading Layers **Pavement Diagram** Layer Thicknesses (in) Overlay (2.1 in)You have removed 2.0 in from the surface of the pavement prior to performing the overlay in this design. Print Asphalt - Dense Graded (6.0 in) Aggregate Base (6.0 in)Subgrade Details Layers Scenario: New AC Overlay Pavement Design Overlay - Asphalt Thickness: 2.1 in Created By: Mel Monk, melmonk@bellsouth.net Asphalt - Dense Graded - Asphalt Last Modified: July 10, 2023 1:37:43 pm Thickness: 6 in Aggregate Base - Asphalt **Design Parameters** Thickness: 6 in Design Period: 20 years Subgrade - Subgrade Thickness: 0 in Reliability Level (R): 85% Combined Standard Error (S₀): 0.5 Initial Servicability Index (p_i): 4.5 Terminal Servicability Index (pt): 2.8

Recommendation:

Perform multiple iterations of the design with different plausible input values to get a sense of the range of pavement structures needed to carry the anticipated loads in various scenarios.

Use engineering judgment to select the optimum pavement structure.



FINAL THOUGHTS ON AC OVERLAY DESIGN

- AC Overlay Design for Flexible Pavement Rehabilitation Only
- Evaluation Methods for Existing AC Pavement
 - Condition Survey
 - Non-Destructive Deflection Testing
- Includes Questions on Coring and Milling
 - Delamination/Stripping
 - Top-Down or Bottom-Up Cracking
- Adjustment to Existing Pavement Layer Coefficients

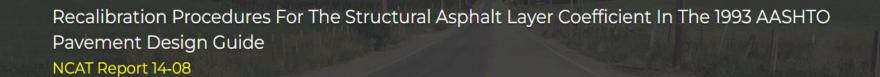
ADDITIONAL PAVEXPRESS FUNCTIONS

AASHTO 93/98 Design

The Design tool uses the empirical AASHTO93 and AASHTO98 equations to design flexible and rigid pavements respectively, including new structures and rehabilitation.

LCCA

The Life-Cycle Cost Analysis (LCCA) tool estimates and compares costs of alternative pavement designs throughout their design life, including both direct (agency) and indirect (user) costs.


Agency Cost

The Agency Cost calculator quickly estimates direct costs implied by a pavement's materials and geometry.

PerRoad

PerRoad supports Perpetual Pavement philosophy and determines pavement design using mechanistic-empirical (ME) concepts.

DOWNLOAD

PAVEInstruct

The PAVEInstruct learning module is a web-based pavement design education system with video instruction by leading industry experts. PAVEInstruct accompanies PAVEXpress, a web-based software created to design flexible and rigid pavements using AASHTO 93/98. The education modules within PAVEInstruct correlate with the design modules in PAVEXpress and provide technically sound pavement design and instruction.

LEARN MORE

PAVEInstruct

The PAVEInstruct learning module is a web-based pavement design education system with video instruction by leading industry experts. PAVEInstruct accompanies PAVEXpress, a web-based software created to design flexible and rigid pavements using AASHTO 93/98. The education modules within PAVEInstruct correlate with the design modules in PAVEXpress and provide technically sound pavement design and instruction.

LEARN MORE

PAVEINSTRUCT Pavement Design Education

PerRoad Design Example

Dr. Dave Timm, Auburn University

Here is a sample of one of the many sessions available through this free learning system. Professional development hours are available for participants.

PAVEINSTRUCT LEARNING MODULE

complement to PaveXpress

- Available on-demand via web.
- Flexible and rigid pavement design.
- Detailed use of PaveXpress.
- Leading industry expert instructors.
- No cost to user.
- PDHs available.

SO, WHAT ELSE SHOULD A PRACTITIONER KNOW?

A FEW QUESTIONS TO PONDER

- Is my design too thick?
- Is my design too thin?
- Is my design just right?
- Design good for today, but about the future?

NCAT REPORT – MAXIMUM THICKNESS

Base Mr (ksi) Subgrade Mr (ksi)		Maximum Asphalt Thicknesses (in.)					
		6-in. Base		8-in. Base		10-in. Base	
	IVII (KSI)	Average	Range	Average	Range	Average	Range
30	5	14	12.5-15.5	13.8	12.5-15	13.3	12-14.5
30	10	12.2	10.5-14	11.7	10.5-13	11	10-12
30	20	10.5	9-12.5	10.7	9-12.5	10	8.5-11
50	5	13.7	12-15	13.2	11.5-14.5	12.3	11-13.5
50	10	11.8	10.5-13	11.2	10-12	10	9-11
50	20	10.2	8.5-12.5	10.2	8.5-12	9	7.5-10
100	5	13.2	12-14	12.2	11-13	11.2	10-12
100	10	11	10-12	10.2	9-11	9	8-10
100	20	9.7	8-12	9	7.5-10.5	8	6.5-9

• NCAT Synopsis 15-05R

THINLAYS

- Multi-Purpose Asphalt Mix.
 - Preventive Maintenance
 - New Construction Surface
- 80M ESAL Mix at NCAT Test Track.
- "Double Pavement Structural Capacity 1" at a Time".
- ALDOT Section 424A 3/8" Maximum Aggregate Size Mix.
- Recommended Placement Rate (80 110 Pounds Per Square Yard) (0.72 – 1.00 Inch).
- ALDOT Section 424T Thin Lift Asphalt Mix.
- Recommended Placement Rate (60 -75 Pounds Per Square Yard) (0.54 0.68 Inch).

OTHER RESOURCES

- Asphalt Pavement Alliance Website
- NAPA Website
- NCAT Website
- AAPA Website

AAPA PUBLICATIONS

- www.alasphalt.com
- Asphalt Pavement Design Guide For Low-Volume Roads And Parking Lots
- Alabama Porous Pavement Parking Lots Guide Specifications
- OGFC Best Practices Guidelines

QUESTIONS ?????

ALABAMA ASPHALT PAVEMENT ASSOCIATION

ALABAMA ASPHALT PAVEMENT ASSOCIATION

Alabama Asphalt Pavement Association 630 Adams Avenue

Montgomery, AL 36104

334/834/5314 (Phone) 334/834/5537 (Fax)

E-mail: alapa@bellsouth.net

Web site: www.alasphalt.com