BOX CULVERTS Alabama virtual series

BOX CULVERTS Alabama virtual series

Alec Parliament, P.E. aparliament@foleyproducts.com 205.440.5775

American **Concrete Pipe** Association

BOX CULVERTS Alabama Virtual Series

Learning Outcomes

- Describe the basic fundamentals of precast drainage structures
- Box Design-Example 2.
- List the necessary steps to properly install box culvert 3.
- Discuss the options available for box culvert end treatments 4.
- Describe how manufacturers are able to provide "specials" 5.
- Discuss the key tenants of Accelerated Precast Construction 6.

American crete Pipe

Course Agenda

CONCRETEPIPE.ORG

Precast Structures Fundamentals

Precast Structures: Fundamentals

4 Síded Box 3 Síded Box

ASTM C76

ASTM C1577

ASTM C1504

Precast Structures: Fundamentals

4 Síded Box 3 Síded Box

ASTM C76

ASTM C1577

ASTM C1504

Pípe

Round

Ellíptical

Arch

4 Síded Boxes

Monolíthíc

Box Culvert 4 Síded Box

Segmented

Clamshell Splítbox Culvert

3 Síded Boxes

3 Síded Box HySpan Arch Bridge

3 Síded Brídge Flat Top Bridge Concrete Frame

3 Síded Brídge

Conspan Arch Frame

Goals for Today

Let's Put on Our "Thinking Caps" about <u>applying todays lesson</u> to current or future jobs

Much has been said about:

Why do we need to Replace & Add Culverts:

• Alabama Facts:

- Total of over 100,900 miles of *paved* roadways
- Over 77,000 miles of rivers and streams

Box Culverts:

- Standard, and Non-Std. uses
- **Beyond Bridges and Culverts:**
- Large Capacity Detention
- Pedestrian, and Wildlife Tunnels
- Junction Chambers:
- Large Capacity Pump Stations
 - Vertical Application (we'll see an example near the end)
- Underground Conveyor Systems:
 - Aggregate suppliers
- "Preppers" Bomb Shelters
 - (yup, where better to spend the rest
 - of your days!)

DETENTION SYSTEMS:

- Most efficient shape
- Large detention volumes
- Meets highway loadings

Little to no cover required

Precast Structures: Advantages

					-		_	_						_						_		_	_	_				_
Activity Description			N	/e	k 1			Week 2									Week 3							W	Veek 4			
		Т	W	1	F	S	S	М	Т	w	Т	F	S	S	м	Т	w	Т	F	S	S	М	Т	w	т	F	S	S
Excavation																												
Excavate Trench																												
Grade	-																											
Base Slab / Walls / Top Slab																												
Install Boxes																												
Backfill					•		-	4			_																	
Backfill																												

Activity Description		Wee			(1				٧	Vee	k 2				٧	Vee	ek 3	5			Week 4							W	eel	٢5			We		eek	6			
		м	Т	۲V	F	S	SI	M	тν	۲٧	F	S	S	м	тν	νT	FF	S	S	м	т١	N	F	S	S	M	Т	w	Т	F	S	S	ИΤ	w	Т	F	s s		
	Excavation																																						
	Excavate Trench																																						
	Grade																-									-													
	Base Slap / Walls / Top Slap																																						
	Base Slab - Form																																						
	Base Slab - Erect Steel																																						
	Walls - Erect Steel (Part 1)																																						
POUR	Base Slab - Pour/Cure						C	QC	PC	C	C	С	С	C	С	1																							
	Base Slab - Strip				-																																		
	Walls/Top Slab- Form																																						
	Walls/Top Slab - Erect Steel (Part 2)																																						
POUR	Walls/Top Slab - Pour/Cure																					C	QC P	С	С	С	С	С	C	С									
	Backfill			U																																			
	Backfill																																						

Precast Structures: Precast Vs Cast-ín-Place

Consistent dimension tolerance

Environmental Exposure

Everyday you're near the creek setting forms-tying steel – pouring concretewaiting for cure time-stripping-You expose yourselves to Environmental Risks

Precast Structures: Precast Vs

Cast-in-Place

Speed, Safety, Less Environmental Impact, Less Liability– You Pick?

Precast Structures: Advantages

- Controlled Curing
 Environment
- Removal from the Critical Path
- Potential for Reduced Cost
- · Lower Weather Dependency
- Símpler Construction Methods
- Accelerated Project Completion

CONCRETEPIPE.ORC

WHY BOX CULVERTS?

BASIC BOX (C1577): 3x2 UP TO 12x12
CUSTOM SIZES
MULTICELL
LARGE SPANS
SHALLOW/ DEEP FILLS (0 TO 300 FT)

CONCRETEPIPE.ORG

Foley Concrete Products.

BOX DESIGN: GUIDING DESIGN PUBLICATIONS

AASHTO: SECTION 12

LRFD BRIDGE DESIGN SPECIFICATIONS

ASTM C-1577

Box Culvert Design: Considerations

- Peak Flow Events:
 - Pipe Size, Slope, Entrance Type, Freeboard, Ponding
 - Inlet / Outlet Control Rainfall, Watershed Modeling
- Economics:

- Life Span, Installation, Cost of Structural Damage, Replacement Costs
- Legal Requirements:
 - EPA, Forest Practice Regulations, Construction Timing
- Fish Passage:
 - Migration Period, Water Velocity, Pipe Inlet Geometry, Water Depth
 - Stability of Outlet Pool
- Maintenance:
 - Woody Debris, Bedload, Maintenance Funding, Scour Effects

Box Culvert Sizing:

Determining required Waterway Area (sq. ft)

- - Estimate Peak Discharge 100yr flood using:
- 1)---Rational Method (most commonly used method)
 - --Assumes Entire Basin has Uniform Constant Rainfall Intensity until the design discharge a the crossing is achieved.

• 2)----USGS Magnitude and Frequency Method

- equations developed from actual precipitation
- and runoff data collected

• 3)---Flow Transference Method:

- -Flow can be determined for streams that are nearby a
- hydrologically similar watershed
 - -With a Long-Term gauging station.

• 4)---<u>Using FHWA Culvert Capacity Nomograph:</u>

- · -Sizing determined by calculated stream flow and headwater depth
- = (headwater / diameter) ratio.

Hydraulic Modeling w/<u>HY-8</u>-it's free!

- Hydraulic computation Model for roadway stream crossings (Culverts)
- Created and Provided Online by FHWA:
 - https://www.fhwa.dot.gov/engineering/hydraulics/software/hy8/
- Allows users to:
 - Allows for multi-barrel crossings and multiple crossing in 1 project*
 - Analyze roadway Overtopping (weir flow over road)
 - Analyze the performance of culverts (velocities, water depths, flow profiles)
 - HEC-RAS

• Inlet Control:

- Culvert will convey more flow than the inlet will accept
- Parameters required to determine Dia. / End Area:
 - Design Flow Rate
 - Maximum <u>Allowable Headwater Depth</u>
 - Culvert Slope
 - Type of Inlet:
 - Type of Culvert Material: RCP, Box Culvert, Other.. **

Outlet Control:

<u>Outlet Control:</u>

- OC=water enters faster than it flows through the culvert
 - <u>Culverts w/O.C often flow full, or partially full</u>.

• Parameters required to determine Dia. / End Area:

- Design Flow Rate
 - Maximum Allowable Headwater Depth
- Culvert Slope

Same as

Control

Inlet

- Type of Culvert Material
- Type of Inlet
- Add: <u>Tailwater Height</u>
 - Length of Culvert

WHAT WE NEED TO DESIGN A BOX CULVERT?

- □ REQUIRED "END AREA^{*}" AS DETERMINED BY ENGINEER □ SPAN- RISE (both in feet) (can be done in smaller increments)
- (* = "NET": LOST END AREA FROM 12" X 12" "HAUNCHES" IN CORNERS)
- (EX: 8' X 8' BOX = 63.1 SQ. FT)

□ FILL HEIGHT: TOP OF BOX TO TOP OF ROAD SURFACE □ LIVE LOAD -HL-93 OR HL-93 MOD □ ÅNGLE OF BOX : ANGLE OF ROAD CROSSING
Loading Considerations:

- Live Loads
- Dead Loads
- Lateral Earth Loads:
 - From Soil and
 - Hydrostatic Loads from Groundwater
- Vertical Loads:
 - From Cover and live loads
- Surcharge Loads:
 - From nearby impact loads
- Seismic loads (where applicable)

Culvert Loading:- <u>Historical Nomenclature: Truck Design</u>

- Historically called: HS-20 44 or (HS-25)
- (where H stands for highway,
- S for semi-trailer)
 - **20** = 20 ton weight of tractor
 - 44= year adopted (1944)
- <u>Current Design Loading:</u>
- A) HL-93 Loading
- (where H stands for highway
- and L stands for Loading).
- (developed in 1993)
- <u>B) HL-93 Mod</u>
- The design of this structure is based on 1.2 times the current AASHTO LRFD Bridge design specification HL-93 loading with the exception that the Design Tandem portion of the HL-93 Load definition shall be replaced by a single 60KIP axle load before application of this 1.2 factor –the resulting factors is designated HL-93 Mod

AASHTO SECTION 12.11.1

MINIMUM TOP SLAB CONCRETE COVER Durable Reliable Infrastructure

□ AASHTO / ASTM C1577 DESIGN □ 3D WIREFRAME GENERATION

LOAD RATINGS PER C1577 & SECTION 12

EXAMPLE: ASTM C1577

□ 4' SPAN X 4' RISE (8" WALLS MINIMUM)

- □ LESS THAN 2' OF COVER
- □ HL-93 LIVE LOADING

5,000 PSI COMPRESSIVE STRENGTH CONCRETE

DESIGN TABLES:

4 ft by 4 ft by 5 in.									
Design Earth Cover, ft	Circumferential Reinforcement Areas, in.2/ft								
	Ast	A _{s2}	A _{\$3}	A ₅₄	Ass	A _{s7}	Ass	"M," in.	TABULAR DESIGNS IN
0<24	0.18	0.33	0.20	0.12	0.18	0.18	0.14		C1577 WERE PREPARED
2<3	0.12	0.26	0.23	0.12				38	ACCORDING TO AASHTO
3-5	0.12	0.18	0.18	0.12				38	
10	0.12	0.15	0.15	0.12				38	
15	0.12	0.19	0.20	0.12				38	SPECIFICATIONS
20	0.12	0.25	0.25	0.12				38	
25	0.14	0.31	0.31	0.12				38	
30	0.17	0.37	0.37	0.12				38	

EXAMPLE: C1577: 4'X4'X8'' (8" WALLS IS OUR MIN.)

MINIMUM COVER

<u>O' COVER:</u>

□ MAXIMIZES HYDRAULIC

CAPACITY

PLACE ROAD SURFACE

DIRECTLY OVER BOXES

JACKED

TRENCH

EMBANKMENT

Installation Options

CULVERT LOADING

EARTHLIVECONSTRUCTION

Unless designed for construction loading, RCB backfill should be placed 3' above top of box to accommodate construction loads.

INSTALLATION BEST PRACTICES

- □ SCHEDULING & UNLOADING = PROJECT EFFICIENCY
- DIVERT DRAINAGE
- □ ESTABLISH A GOOD, LEVEL GRADE
 - □ USE FINE TO MEDIUM MATERIAL
 - □ LEVELING COURSE SHOULD BE 3" (MIN)

INSTALLATION KEYS

1-HANDLING 2-DEWATERING 3-BEDDING 4-PLACEMENT

5-JOINING

6-FINAL BACKFILL

7-END TREATMENTS

8-SPECIALS

1-HANDLING

TRANSPORT:

- BRIDGE SECTIONS ARE NORMALLY
 LOADED ON THEIR SIDES AND
 TRANSPORTED TO THE JOBSITE
- SPECIAL CARE MUST BE TAKEN DUE TO THE LEGS

America

Association

Concrete Pi

TRANSPORT:• EXERCISE CAUTION!

OAK BRANCH @ 60 MPH

2-DEWATERING

DEWATERING:

CONTROL SURFACE & GROUND WATER

MAINTAIN DRY CONDITIONS DURING INSTALLATION

DEWATERING:

BEDDING:

CHECK LINE AND GRADE FREQUENTLY AND EVENLY

BEDDING: CHECK LINE AND GRADE

FREQUENTLY AND EVENLY

BEDDING: BEDDING IS KEY TO A SMOOTH INSTALLATION!

4-PLACEMENT

PLACEMENT: Sequential marking helps proper placement on Large/complex jobs

5-JOINING

JOINING:

ASTM C1577:

□ BOX JOINTS ARE TO BE TONGUE & GROOVE

- □ MORTAR
- □ SEALANT
- □ FABRIC WRAP

JOINING:

VARIOUS JOINT MATERIALS ARE USED IN THE MARKET:

- □ MASTIC
- NEOPRENE CLOSED CELL SPONGE
- BUTYL RUBBER SEALANT
- **BUTYL EXTERIOR JOINT WRAP**
- D PROFILE RUBBER GASKETS

JOINING: PREVENT BEDDING MATERIAL ENTERING THE JOINT.

□ SMOOTH THE BEDDING TO IMPROVE HOMING THE JOINT.

JOINING:

HOMING TECHNIQUES DRIVEN BY CAPABILITIES OF CREW, EQUIPMENT & CONDITIONS.

POCKET BOLTS

POST TENSIONING STRANDS

6-FINAL BACKFILL

FINAL BACKFILL:

- □ COMPACT BACKFILL IN LIFTS
- AVOID LARGE ROLLING COMPACTORS OVER THE CULVERT

Avoid Construction Loading with Less than 3' of cover!

FINAL BACKFILL: MINIMUM COVER

PROVIDE WEARING SURFACE FOR MINIMUM COVER

FINAL BACKFILL: MAXIMUM COVER

SPECIAL DESIGN IS NEEDED FOR *DEEP* COVER

SUCCESSFUL 1ST INSTALLATION:

7-END TREATMENTS

PRECAST END UNIT ADVANTAGES:

- SAVE WEEKS OFF CONSTRUCTION SCHEDULE
- ALLOWS IMMEDIATE BACKFILL AND COVER
- GEOMETRIC FLEXIBILITY-DESIGNED TO FIT YOUR SITE
- AESTHETIC MOLDS ARE EASILY APPLIED

American **Concrete Pipe** Association

L-WING WALLS ACT AS CANTILEVERED WALLS WITH WEIGHT OF SOIL BACKFILL

American **Concrete Pipe** Association

American **Concrete Pipe** Association

STRIP FOOTING CONTINUOUS UNDER FLARED WINGWALLS

NATURAL FACADES CAN BE PRECAST OR CAST IN PLACE INTO WINGWALLS & HEADWALLS

SPECIALS:

BENDS CAN SAVE MONEY & ELIMINATE JUNCTION BOXES

SPECIALS:

MANUFACTURERS CAN CUSTOMIZE ANY BEND ANGLE

SPECIALS:

Extending existing CIP Boxes

MULTI BOXES:

A THE TAX A PARTY AND A PARTY

MULTICELL VS MULTIBARREL

SKEWED ENDS:

SKEWS ARE LIMITED BY SIZE & GEOMETRY.

LARGE BOXES:

TWIN 14x11

20x12 Animal Crossing

TRANSITION

 $C1577: 3x2 \rightarrow 12x12$

PENETRATIONS:

PENETRATION ADDRESSED IN PLANT
CAN BE DESIGNED FOR FIELD PENETRATIONS
TOP, BOTTOM & SIDE PENETRATIONS

RESILIENCE:

CONCRETEPIPE.ORG

RESILIENCE:

ADAPTIVE DRAINAGE INFRASTRUCTURE DRY WEATHER INVERTS

CONCRETEPIPE.ORG

