History of the Interstate
In Alabama

Rex Bush
Senior Vice President
Transportation
Interstate 10

• Begins in Santa Monica, California
• Ends in Jacksonville, Florida
• 2460 miles long with 66 miles in Alabama
July 1, 1987

Interstate 10 Facts

Did you know Interstate 10 begins in Santa Monica, California, and ends in Jacksonville, Florida, a distance of 2,460 miles. It is one of the five interstate routes in the United States that is over 2,000 miles in length. 66.3 miles of Interstate 10 is in Alabama. Of the 66.3 miles in Alabama, it took 15 years and seven months to construct at a cost of $257,300,000. Construction began in October, 1962, and ended in May, 1978. Over 56 major projects and 37 prime contractors accounted for its construction. The smallest contract let on the system was $2,787 and the largest was $79,800,000. It is the only interstate route in Alabama that has a tunnel. The George C. Wallace tunnel in Mobile is .8 of a mile long and cost $47,500,000.
<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavation (Dredging and Unclassified)</td>
<td>1,575,000 Cu. Yds.</td>
</tr>
<tr>
<td>Backfill (All Types)</td>
<td>1,292,000 Cu. Yds.</td>
</tr>
<tr>
<td>Concrete (All Classes)</td>
<td>221,130 Cu. Yds.</td>
</tr>
<tr>
<td>Reinforcement (All Types)</td>
<td>7,200 Tons</td>
</tr>
<tr>
<td>Structural Steel (All Shapes)</td>
<td>3,100 Lin. Ft.</td>
</tr>
<tr>
<td>Steel Piling (Foundation)</td>
<td>76,000 Lin. Ft.</td>
</tr>
<tr>
<td>Bituminous Concrete</td>
<td>3,000 Tons</td>
</tr>
<tr>
<td>Membrane Waterproofing</td>
<td>26,000 Sq. Yds.</td>
</tr>
<tr>
<td>Brick in Mastic Waterproofing</td>
<td>23,000 Sq. Yds.</td>
</tr>
<tr>
<td>Pneumatically Applied Mortar</td>
<td>22,000 Sq. Yds.</td>
</tr>
<tr>
<td>Face Brick</td>
<td>340,000</td>
</tr>
<tr>
<td>Precast Concrete Coping</td>
<td>3,100 Lin. Ft.</td>
</tr>
<tr>
<td>Ceramic Tunnel Tile</td>
<td>385,000 Sq. Ft.</td>
</tr>
<tr>
<td>Elevators</td>
<td>2</td>
</tr>
</tbody>
</table>
The tunnel and tunnel ramps are a portion of Interstate I-10 and provide two lanes for both eastbound and westbound traffic under the Mobile River. The project begins at the grade point of the west ramp, Station 106+98 plus or minus, on the east side of the Mobile River and extends under the river and up to the grade point of the east ramp, Station 100+57 plus or minus, on the east side of the Mobile River. The project consists of the West Ramp, the West Arch Section, the West Ventilation Building, the East Transition Section, the West-End Section, the West-End Transition Section, the West-End Transition Section, the West-End Ventilation Building, the East Arch Section, and the East Ramp.

The east ramp tunnel is carry grade point 118 + 20 and the west ramp tunnel is carry grade point 215 + 50. Ramps are in a U-shape with the bottom slab extended. Portions of the ramps are curved in place. Provision against leakage of water is by means of brick-in-necessity under the bottom slab and a waterproofing membrane on the outside of the walls protected by pneumatically applied mortar reinforced with wire mesh. The inner or roadway surfaces of the ramp walls are faced with dark-colored masonry.

The arch and transition sections have an interior configuration the same as the tubal sections, except that the underfloor air ducts are omitted in the arch sections. The arch sections are waterproofed with brick-in-necessity under floor and membrane waterproofing above, and the transition sections are enclosed within steel plate waterproofing. Both membranes and steel plate waterproofing are protected by pneumatically applied mortar reinforced with wire mesh. The interior roadway walls and ceiling are lined with ceramic tiles of high reflectance.

The ventilation buildings are rectangular structures straddling the traffic lines with space under the floor for the ventilation fan chambers, space over the tunnel sections for equipment rooms housing the electrical and control equipment, and side air shafts for the fresh air intake.

The building is waterproofed with brick-in-necessity under floor and the walls, up to the points associated with membrane waterproofing protected by a pneumatically applied mortar coating. Exterior above-ground walls of the buildings and air shafts have an architectural treatment compatible with other structures in the area.

The twin tunnels are built into a monolithic structure comprising inner and outer steel plate shell disposed and stiffened with diaphragms. The inner shell serves as the outer form for the reinforced concrete structure ring. The space between the shells is filled with concrete poured as ballotina and, when complete, provides sufficient weight to overcome buoyancy and additional protection to the tubes. The interior roadway walls and ceiling are lined with ceramic tile.

The roadway covering surface grade point of grade point, is 3-inch compacted thickness houniform pavings placed on the concrete base. Ventilation of the tunnel is provided by means of a longitudinal ventilation system in which fresh air is automatically supplied from the east and west ventilation buildings through air ducts under the roadway tunnel to discharge ports above the roadway ducts. Ventilated air is exhausted through the east and west portals.

The tunnel lighting system comprises continuous rows of fluorescent fixtures with various stages of illumination provided automatically to efficiently light the tunnel with the varying levels of sunlight outside the tunnel. Lighting of ramps is accomplished by means of mercury vapor wall-mounted and pole-mounted roadway fixtures, operated automatically by photovoltaic relay.

A drainage system is provided to dispose of rain water falling on the open ramps and wash down water or water carried into the tunnel from other sources. Storm water falling on the tunnel ramps from grade points to ports is drained through intercepting gutters at the portals to sumps. The water from vehicular falling on the tunnel roadway and water from wash down is drained by pipes to individual sumps. Properly sized pumps, with one stand-by each size, pump water from the sumps to the outfall line in the east and west sides of the Mobile River.

Fire protection consists of sprinkler (non-ferrous) pumps, driven by totally enclosed sparkproof motors, fixed valve at spewing level with fire alarm system, automatic self-contained foam protective systems at mid-channel sumps, and fire sprinklers in portal sumps, automatically operated sprinkler systems with fog nozzles in the air duct, mobile fire extinguishers spaced throughout the tunnel and in electrical equipment rooms, control rooms, and all pump rooms. Smoke may be withdrawn from either or both tubes by remotely controlling the ventilation fans. Telephone emergency stations are spaced throughout the tunnel, and each station will automatically ring the master station located in the Central Room. In addition, fire alarm stations are spaced throughout the tunnel and are connected to the fire alarm system of the City of Mobile.

The sound power of telephones system provides communication facilities for tunnel maintenance, and consists of telephones and public address systems, spaced throughout the tunnel, connected to a fixed location with buzzer on the Central Room.

The traffic surveillance and auxiliary system consists of three systems, namely: (1) A traffic signal system composed of ramp and tunnel traffic signals controlled from the Central Desk, and on the tunnel sections, thus providing complete lane traffic control; (2) A closed circuit television system consisting of camera and camera monitors with their monitors mounted in the Central Desk; and (3) A sound system composed of loudspeakers and sound pick-up stations located in the tunnel and voice originations and tunnel voice monitoring equipment located on the Central Desk, thus providing means for speaking to tunnel motorists and hearing tunnel motorists.

All controls, equipment are completely automatic but may be manually operated. The pumps are started and stopped automatically by fire level float switches in the respective sumps. The rate of ventilation is controlled automatically by time clock, rate of traffic computers, and carbon monoxide content in the tunnel air. The lighting is controlled by photoelectric devices. The emergency generator is controlled automatically to start upon power failure and shut down upon return to normal power.

Special Requirements:

Generally, all construction operations on the west side of the Mobile River shall be performed in such a manner as to prevent damage to the County Court House, Mobile City Hall,-boot Dept, Police Station, boot Dept, and other structures within the area of influence of construction operations. This will require careful driving of construction equipment to prevent damage by vibration. This will also require strict control of ground water in the area in the following excavations: A system of ground water recharge is provided and a system of piezometers and settlement plates is also provided to monitor conditions throughout the construction period.

Historical artifacts and relics, believed to be located particularly in the Fort Cond seamless area but which may also be located in other areas on the west side of the river, will require careful excavation procedures so that these artifacts and relics may be recovered undamaged. The removal of these historical items will be done by others. The time required to complete the project is estimated to be in the range of 25 to 35 years.

Construction began October 9, 1969.

The tunnel opened to traffic on Feb. 9, 1973 at a cost of approximately $55 million.

GEORGE C. WALLACE TUNNEL
INTERSTATE 10
MOBILE, ALABAMA

A project of the
Alabama Highway Department
in Cooperation with the
United States Department of Transportation
Federal Highway Administration

Engineering Consultant
Palmer and Baker Engineers, Inc.

Built by
Mobile Tunnel Constructors
a joint venture
Winston Bros. Company
Atlas Construction Co. Limited

The Foundation Company of Canada Limited

George C. Wallace, Governor
State of Alabama
Ray D. Bass, Director
Alabama Highway Department

Ron H. Turner, Asst. Director
Alabama Highway Department
Interstate 20

• Begins in Pecos, Texas
• Ends in Florence, South Carolina
• 1537 miles long with 215 miles in Alabama
• 130 miles overlap with I-59 (85 miles are considered as the I-20 portion)
I-20 STATISTICS

Construction Years - 28 years 2 months.

Length of Route - 84.61 miles.

48+ Contracts ("I" Only)

COST - PE - 6,400,374
 ROW - 22,911,085
 CONST. - 184,165,372

TOTAL "I" = $213,476,831

IR = $41,049,905

"I" and "IR" = $254,526,736
Interstate 22

• Begins at the west Alabama border with Mississippi and runs to I-65 just north of Birmingham
• 100 miles long
Interstate 59

• Begins in Slidell, Louisiana
• Ends in Georgia just a few miles from Chattanooga, Tennessee
• 444 miles long with 241.5 miles in Alabama
Interstate 65

- Begins in Mobile, Alabama
- Ends in Gary, Indiana
- 887 miles long with 367 miles in Alabama
I-65 STATISTICS

(Data as of 12/19/85)

- Construction began **October 1956** and ended **December 1985**
- Construction Years - 29 years 2 months

- Length of Route - 366.98 miles - Total "I" Projects = 255+

- COST
 - (I-Funds) PE = 24,604,174
 - ROW = 74,456,170
 - CONST. = 659,101,696
 - TOTAL "I" = **$758,162,040**

- IR Funds to Date = **$66,822,738** - "I" and "IR" = **$824,984,778**

The first Interstate Estimate in 1958 indicated a cost of **$754,952,000** to build Alabama's System. This did not include 565 and I-210 which alone are estimated to cost approximately 551 million dollars.

Route 65's cost as one can see is more than the original statewide estimate.
A LINKUP COMES NEARER TO REALITY

With the letting of a contract this month for a 1.2-mile segment of Interstate 65 in Montgomery, the work on this 83-mile route in Alabama enters its final phase.

The route in Atlanta and on completion in the latter half of 1969. 165 will end in the tri-level Belt Street interchange where it meets 1-65, the north-south route from the Tennessee border to Mobile.

I-85 will in the tri-level Belt Street interchange where 165 will come down the long and narrow peninsula of land created by a loop of the Alabama river. It will traverse this route via a bridge and 165 construction preliminary work on the Belt Street bridge will be a part of the Highway Department's December letting.

165 will then bridge the transponts and enter downtown Montgomery.

Dickerson then south to the ramp near Reynus. Or they may use a split-lane exchange between Holmwood and Union Streets in some 160 and then join 1-85 at the Belt Street interchange.

Mulberry and Forrest just south of Oak Park in the Jackson Hospital vicinity, and at Ann Street via a conventional diamond construction.
A LINKUP COMES NEARER TO REALITY

With the letting of a contract this month for a 13.5 mile segment of Interstate 85 in Montgomery, the long-planned work on I-85 in Alabama enters its final phase.

The route in Atlanta and up into Virginia ends in Montgomery at its junction with I-65, still to be built. A new route from there to the Tennessee border in Mobile.

The detail maps on this page show the various parts at which traffic will enter and leave downtown Montgomery.

A preliminary work on the Hall Street bridge will be a part of the Highway Department's December letting.

The I-85 will then bridge the truss type bridge over Bell Street, pass under both Bell and on into the Hall Street interchange. Materials headed for Mobile from downtown Montgomery may drive east and Bell to

Bell Street Bridge exchange (Point 1 on Overall Map), and

Bell Street Interchange (Point 2) Shown in detail in this drawing.

Mulberry-Jackson Entrances, Exits (Point 4) Detailed Above.
DEDICATION CEREMONY

STATE OF ALABAMA
HIGHWAY DEPARTMENT

I-65-FULTONDALE TO WARRIOR

George C. Wallace
Governor

Ray D. Bass
Highway Director
Just north of this project, between Warrior and Hayden, the first section of Interstate Highway in Alabama was open to traffic on November 17, 1958. Today we gather to dedicate and open the final 14 mile missing link in Alabama’s main line Interstate System.

Nearby U. S. 31 was a modern highway in the mid-50's with its roadbed designed to standards to allow for ultimate conversion to Interstate.

On November 11, 1958 opposition to the conversion proposal was voiced during a Public Hearing, leading to development of a new route west of U. S. 31. Revisions in design, urban growth and documentation required by the National Environmental Policy Act of 1972 caused further delays. Final approval of the present I-65 route was received on November 2, 1978.

This modern scenic highway typifying "Alabama The Beautiful" is dedicated to your motoring safety, convenience and pleasure.

DEDICATION CEREMONY

I-65-FULTONDALE TO WARRIOR

December 19, 1985

1:30 P.M.

PROGRAM

MASTER OF CEREMONIES
Mr. R. D. Jeffreys
Division Engineer
Alabama Highway Dept.

INVOCATION
Rev. Ray Moore
Pinewoods Baptist Church

NATIONAL ANTHEM
Fultondale High School Band
Mr. Doug Noel

REMARKS
Honorable Ray D. Bass
Director
Alabama Highway Dept.

REMARKS
Honorable Ray Barnhart
Federal Highway Administrator

ADDRESS
Honorable George C. Wallace
Governor
State of Alabama

THE RIBBON CUTTING CEREMONY

MOTORCADE THROUGH THE PROJECT
Interstate 85

• Begins in Montgomery, Alabama
• Ends in Petersburg, Virginia
• 668 miles long with 80 miles in Alabama
Interstate Spurs

- Interstate I-165 Mobile, Alabama
- Interstate I-359 Tuscaloosa, Alabama
- Interstate I-459 Birmingham, Alabama
- Interstate I-759 Gadsden, Alabama
- Interstate I-565 Huntsville, Alabama
- Interstate I-985 Montgomery, Alabama ??
OPENING CEREMONY
LURLEEN BURNS WALLACE BOULEVARDB and I-359
September 13, 1983 2:0'clock p.m.

Master of Ceremonies........Mr. Bobby J. Kemp
 Division Engineer
 Alabama Highway Department

Invocation..............The Rev. Charles Heltman
 Pastor of the South Highland
 Baptist Church
 Tuscaloosa, Alabama

National Anthem.........Hillcrest High School Band
 Tuscaloosa, Alabama

Welcome..................The Hon. Alvin DuPont
 Mayor
 City of Tuscaloosa

Recognition of
Dignitaries...............The Hon. Hilliard Fletcher
 Commissioner of Finance
 City of Tuscaloosa

Introduction of
Highway Director..........The Hon. Hardy McCollum
 Probate Judge
 Tuscaloosa County

Remarks....................The Hon. Ray D. Bass
 Highway Director
 Alabama Highway Department

Introduction of
Governor Wallace.........Mr. Roland Pugh
 Chamber of Commerce
 Highway and Road Committee
 City of Tuscaloosa

Remarks....................The Hon. George C. Wallace
 Governor
 State of Alabama

Ribbon Cutting and Drive Over Project
DEDICATION CEREMONY
1-459-THE SOUTHERN BYPASS
DEDICATION CEREMONY
I-459-THE SOUTHERN BYPASS

December 19, 1984
1:00 P.M.

PROGRAM

MASTER OF CEREMONIES
Mr. R. D. Jeffreys
Division Engineer
Alabama Highway Dept.

INVOCATION
Rev. Claude Moore
Church of God
State Headquarters

NATIONAL ANTHEM
McAdory High School
Band of Gold
Directed By:
Mr. Howard Beckner

REMARKS
Honorable Ray D. Bass
Director
Alabama Highway Dept.

ADDRESS
Honorable George C. Wallace
Governor
State of Alabama

THE RIBBON CUTTING CEREMONY

MOTORCADE THROUGH THE PROJECT
The I-565 Spur is a 21.5 mile Interstate connecting I-65 near Decatur with Huntsville and U.S. Highway 72.

The first construction project began in December 1984 and completion is scheduled for February 1992.

There were thirty-six construction projects ranging in cost from 169 thousand dollars to 41 million dollars with a combined construction cost of approximately 280 million dollars.

Adding the construction cost to the cost for engineering, right-of-way acquisition, utility relocation, and other associated costs, the total cost for the I-565 Spur is over 425 million dollars. The cost was shared between the Federal Highway Administration (90%) and the Alabama Highway Department (10%).

Quantities of selected material required for I-565 construction:

- Materials Excavation & Placement: 15.7 Million Cubic Yards
- Concrete: 234 Thousand Cubic Yards
- Asphalt Paving: 1.5 Million Tons
- Concrete Reinforcing Steel: 18.6 Million Pounds
- Structural Steel: 71 Million Pounds

OPENING CEREMONY
I-565 SPUR

OCTOBER 25, 1991 12:00 NOON

PROGRAM

MASTER OF CEREMONIES
Mr. Dalmus Davidson
Division Engineer
Alabama Highway Department

INVOCATION
Dr. Jimmy Jackson
Pastor
Whitesburg Baptist Church

PLEDGE OF ALLEGIANCE
Rev. O. Wendell Davis
Union Chapel Missionary Baptist Church

NATIONAL ANTHEM
"I Love America Ensemble Singers" Whitesburg Baptist Church

SPEAKERS
- The Honorable Steve Hettinger
 Mayor
 City of Huntsville
- The Honorable Perry A. Hand
 Director
 Alabama Highway Department
- The Honorable Guy Hunt
 Governor
 State of Alabama

***************RIBBON CUTTING***************

A special thanks to the Alabama Institute for the Deaf and Blind for providing an interpreter for the hearing impaired.
OPENING CEREMONY

INTERSTATE 565 SPUR

GUY HUNT
GOVERNOR

PERRY A. HAND
HIGHWAY DIRECTOR

ALABAMA HIGHWAY
DEPARTMENT

DIVISION CONSTRUCTION
ENGINEERS

Mr. James F. Horsley
Mr. David Hargrove

DISTRICT ENGINEERS

Mr. R. C. Burgett
Mr. DeJarvis Leonard

PROJECT ENGINEERS

Jeffery L. Benefield
R. C. Burgett
Roland Burks
Milton R. Chamblee
Billy R. Fanning
Jerald Farris
Lawrence W. Haver
Robert W. Holmberg
DeJarvis Leonard
Donald C. Maddox
James Miller
Raymond J. Riggs
Rick D. Snow
Curtis Vincent
Billy J. Whaley
R. L. Willoughby

UTILITY PROJECT
ENGINEERS

John Ford
Charles R. Garrett
Anthony J. Laster

PRIME CONTRACTORS

Alabama Bridge
Builders, Inc
Apex Contracting, Inc
APAC-Alabama, Inc.
Associated Electrical
Contractors, Inc.
Bradford Electric
Company, Inc.
Burgreen Contracting
Company, Inc.
Dement Construction Co.
Harbert International, Inc.
Hill Brothers
Construction Company
Hoyt Harris, Inc.
Kent Excavating, Inc.
Lockwood Construction
Company, Inc.
Miller & Miller, Inc.
Roland Pugh
Construction, Inc.
R. R. Dawson Bridge Co.
Shelby Contracting
Company, Inc.
Vaughn Contractors, Inc.
W. A. Ellis Construction
Company, Inc.
W. S. Newell, Inc.
The Interstate System serves the contiguous 48 States and the District of Columbia, and there are also three routes in Hawaii. There are no Interstate routes in Alaska.

Five of the main routes are over 2,000 miles in length. Longest in gross length are I-90, 3,088 miles, and I-80, 2,999 miles. Their ranks are interchanged, however, when their respective net lengths of 2,794 and 2,856 miles are used. Next longest routes (and their gross lengths in miles) are routes 1-10 (2,460), 1-40 (2,458), and 1-70 (2,187). Eight other routes are over 1,000 miles in length: 1-5, 15, 20, 25, 35, 75, 94, and 95. Another nine routes are 500-1,000 miles long.

Three routes, I-10, 40, and 90, cross the Nation from coast to coast, and I-40 nearly makes it. Seven routes run from border to border or nearly so: 1-5, 13, 35, 65, 75, and 95. Of course, by following a combination of several routes, it will be possible to travel from any sizeable city in the United States to any other via the Interstate System. Of the 275 cities in the United States with populations of more than 50,000, 236 or 86 percent are served by the Interstate System, as are 45 of the State capital cities, plus the Nation's capital, Washington, D.C.
Interstate System

October 1956 through January 1, 1967

<table>
<thead>
<tr>
<th>ROUTE</th>
<th>TOTAL MILES</th>
<th>TOTAL CONTRACTOR AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-10-1</td>
<td>66,280</td>
<td>$203,838,587</td>
</tr>
<tr>
<td>I-20-1</td>
<td>84,342</td>
<td>$174,831,101</td>
</tr>
<tr>
<td>I-59-1</td>
<td>138,839</td>
<td>$311,927,623</td>
</tr>
<tr>
<td>I-59-2</td>
<td>103,676</td>
<td>$77,426,755</td>
</tr>
<tr>
<td>I-65-1</td>
<td>191,477</td>
<td>$312,280,987</td>
</tr>
<tr>
<td>I-65-2</td>
<td>72,595</td>
<td>$138,506,147</td>
</tr>
<tr>
<td>I-65-3</td>
<td>99,774</td>
<td>$146,869,771</td>
</tr>
<tr>
<td>I-85-1</td>
<td>80,941</td>
<td>$51,342,263</td>
</tr>
<tr>
<td>I-359</td>
<td>2,001</td>
<td>$34,128,335</td>
</tr>
<tr>
<td>I-459</td>
<td>32,399</td>
<td>$158,672,507</td>
</tr>
<tr>
<td>I-565</td>
<td>10,610</td>
<td>$36,175,436</td>
</tr>
<tr>
<td>I-759</td>
<td>4,470</td>
<td>$31,007,083</td>
</tr>
</tbody>
</table>

TOTAL 887,404 **$1,677,006,695**
Connect with us.

www.TTLUSA.com