STONE STRONG

PRECAST RETAINING WALL SOLUTION

ROAD MAP

CENTER ST

- Insight
- Concept
- Advantages
- Components
- Details
- Theory
- Solutions

OOLWORTH AVE

THE INSIGHT

"Why must we sacrifice space for stability?"

"What if bigger meant safer and faster, too?"

THE CONCEPT

Create a fully and intelligently engineered retaining wall system.

24 SF BLOCK

	3'		
Block Wt.	6,000 lbs	2,720 kg	8'
Form Wt.	4,600 lbs	2,090 kg	
Concrete Volume	1.50 CY	1.15 m ³	
Aggregate Infill	1.60 CY	1.22 m ³	
(per face area)	0.1 tons/sf	1,000 kg/m ²	

NOTJUST BICCER.

DON'T JUST TAKE OUR WORD FOR IT...

HITEC Evaluation Highway Innovative Technology Evaluation Center

Technical Evaluation Report

EVALUATION OF THE STONE STRONG® GRAVITY WALL SYSTEM BY STONE STRONG SYSTEMS®

FINAL REPORT

Prepared by the Highway Innovative Technology Evaluation Center (HTEC) FEBRUARY 2010

Key Findings

 Viable alternative to traditional cast in place and MSE retaining wall systems

 Validation of methodologies and underlying engineering basis and concepts

• Evidence of conformance with AASHTO methodologies

ASTM C1776

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Designation: C1776/C1776M - 17

Standard Specification for Wet-Cast Precast Modular Retaining Wall Units¹

This standard is issued under the fixed designation C1776/C1776M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers wet-cast precast modular retaining wall units cast from first-purpose concrete with or without the inclusion of steel reinforcement. The precast units covered by this specification are machine-placed units intended for use in the construction of dry stacked modular retaining wall systems. A884/A884M Specification for Epoxy-Coated Steel Wire and Welded Wire Reinforcement

- A934/A934M Specification for Epoxy-Coated Prefabricated Steel Reinforcing Bars
- A1055/A1055M Specification for Zinc and Epoxy Dual Coated Steel Reinforcing Bars
- A1060/A1060M Specification for Zinc-Coated (Galvanized) Steel Welded Wire Reinforcement Plain and Deformed

THE ADVANTAGES

BIGGER

LARGER than the competition.

- Massive 24-square-foot block · Reduced labor costs
- Structural strength without
 need for mechanical tieback
- Faster, easier installation process

Install **Square feet** of block per day with a three-man crew.

- Reduced transportation
 Innovative hollow design
 costs
- Faster, easier and less
 I costly installation process
- Less weight per square foot

Full structural and geotechnical engineering

- Voids provide integrated drainage system
- Aggregate infill ensures interlock between courses
- Lifting loops align precisely
- Recesses deliver automatic setback
- Tapered edges contour to any landscape
- Dense, less permeable air- entrained 4,000-psi concrete-minimum

AESTHETICALLY ATTRACTIVE

BIG AND BEAUTIFUL

Customizable patterns

Handcrafted by real artisans

Fits seamlessly into any landscape

Endless Possibilities

THE COMPONENTS

24 SF Block

Face: 8' x 3'; Width 44" Weight: 6,000 lbs.

24 SF Top Block

Face: 8' x 3'; Width 44" Weight: 5,400 lbs.

24 SF Mass Extender Block

Face: 8' x 3'; Width 56" Weight: 10,000 lbs.

24-62 Block

Face: 8' x 3'; Width 62" Weight: 6,600 lbs.

24-86 Block

Face: 8' x 3'; Width 86" Weight: 7,400 lbs.

6 SF Block

Face: 4' x 18"; Width 44" Weight: 1,600 lbs.

6-28 Block

Face: 4' x 18"; Width 28" Weight: 950 lbs.

Accessories

3 SF Block

45° Block

90° Block

Dual Face Block

Download Center

stonestrong.com

STONE STRONG SYSTEMS'

DOWNLOADS GALLERIES BLOCKS CASE STUDIES FIND A DEALER ABOUT CONTACT

DOWNLOAD CENTER

ORT	ALL	GENERAL INFORMATION ENGINEERING DETAILS / CAD FILES INTERACTION TESTING REPORTS	5	TECH MEMOS
		GRAVITY ANALYSIS SPREADSHEET V5.6 (UPDATED 1.10.17)	PDF	
		24 SF BLOCK TESTING REPORT	PDF	
		6-28 SALES SHEET	PDF	
		6 SF BLOCK TESTING REPORT	PDF	
		COMPONENTS METRIC DWG	PDF	
		COMPONENTS SAE DWG	PDF	
		CORNER DETAILS METRIC DWG	PDF	
		CORNER DETAILS SAE DWG	PDF	
		CROSS SECTIONS METRIC DWG	PDF	
		CROSS SECTIONS SAE DWG	PDF	
		DETAILS INTRODUCTION	PDF	

Corners/Radius

24 SF Block

М	Minimum Concave					
	Radius					
Wall Height	Wall Height Total # of Reqd. Radius					
(ft)	Courses	at Top Course				
6	2	46' 4"				
9	3	46' 8"				
12	4	47' 0"				
15	5	47' 4"				
18	6	47' 8"				
21	7	48' 0"				
24	8	48' 4"				

NOTE: MINIMUM RADIUS OCCURS AT LOWEST COURSE. RADIUS INCREASES 4" PER COURSE ABOVE, AS SHOWN ON TABLE.

MINIMUM CONCAVE RADIUS-24SF UNITS

NOT TO SCALE

-R=51'-8" MIN. (SEE NOTE)

NOTE: MINIMUM RADIUS OCCURS AT TOP COURSE. REQUIRED RADIUS INCREASES 4" PER COURSE BELOW, AS SHOWN ON TABLE.

MINIMUM CONVEX RADIUS-24SF UNITS

Minimum Convex					
Radius					
Wall Height	Wall Height Total # of Reqd. Radius				
(ft)	Courses	at First Course			
6	2	52' 0"			
9	3	52' 4"			
12	4	52' 8"			
15	5	53' 0"			
18	6	53' 4"			
21	7	53' 8"			
24	8	54' 0"			

Corners/Radius

6 SF Block

Minimum Concave Radius				
Wall Height Total # of Reqd. Radiu (ft) Courses at Top Course				
3	2	13' 8"		
4 1/2	3	13' 10"		
6	4	14' 0"		
7 1/2	5	14' 2"		
9	6	14"4"		
10 1/2	7	14' 6"		
12	8	14' 8"		

NOTE:

MINIMUM RADIUS OCCURS AT LOWEST COURSE. RADIUS INCREASES 2" PER COURSE ABOVE, AS SHOWN ON TABLE.

MINIMUM CONCAVE RADIUS-6SF UNITS

NOT TO SCALE

Minimum Convex					
Radius					
Wall Height	Wall Height Total # of Reqd. Radius				
(ft)	Courses	at First Course			
3	2	16' 2"			
4 1/2	3	16' 4"			
6	4	16' 6"			
7 1/2	5	16' 8"			
9	6	16' 10"			
10 1/2	7	17' 0"			
12	8	17' 2"			

NOTE: MINIMUM RADIUS OCCURS AT TOP COURSE. REQUIRED RADIUS INCREASES 2" PER COURSE BELOW, AS SHOWN ON TABLE.

MINIMUM CONVEX RADIUS-6SF UNITS

NOT TO SCALE

24SF WALL BASE STEP NOT TO SCALE

TOP	OF	WA	ALL	STEPS
	N	от то	SCALE	

Top End/Steps

96"

Base/Embedment & Backfill Compaction

Proper backfill compaction is critical to wall stability

No reduced compaction requirement behind face

Less sensitive to displacement – 10,000 lb. mass can support equipment

THE THEORY

Coulomb's Active Earth Pressure Theory

$$K_{a} = \frac{\cos^{2}(\phi + \omega)}{\cos^{2}(\omega)\cos(\omega - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \beta)}{\cos(\omega - \delta)\cos(\omega + \beta)}}\right]^{2}}$$

Coulomb's Active Earth Pressure Theory

Reference Standards

- AASHTO Bridge Manual
- FHWA-NHI-10-024, MSE Walls and Reinforced Soil Slopes
- CAN-CSA-S6-06, Canadian Highway Bridge Design Code
- NZTA SP/M/022, New Zealand Transport Agency Bridge Manual
- International Building Code

Customer: "So, how high can we build"

Engineer: "Well, it depends..."

International Building Code

			240F & 00	r units u
Vpe	Backfill Slope	Level	Level	Level
ii J	Surcharge	0 psf	150 psf	0 psf
S	Seismic PGA	0g	0g	0.20g
Clay, φ =	: 26°	9.0 ft.	7.5 ft.	9.0 ft.
Sand, 🖗	= 30°	10.5 ft.	7.5 ft.	9.0 ft.
Sand/Gr	avel, ø = 34°	12.0 ft.	10.5 ft.	10.5 ft
Crushec	l Stone, φ = 38°	13.5 ft.	10.5 ft.	12.0 ft

24SF & ASF units only

3H:1V	Table based on minimum recommneded safety factors			
0 psf	Overturning FS=1.5	Sliding FS=1.5	Bearing FS	
0g	Seismic safety factors reduced by 25%			
7.5 ft.	clay soil includes 150 psf cohesion in foundation soil			
7.5 ft.	unit weight 120 pcf for	clay, 125 pcf for all	other soils	
10.5 ft.	foundation soil limited	to φ = 30°		
12.0 ft.]			

0.4 CO hase unit

be	Backfill Slope
<i>ii</i> 7,	Surcharge
	Seismic PGA
Clay, φ = 26°	
Sand,	,
Sand/Gravel,	φ = 34°
Crushed Stor	ne,

	24-62 base unit						
Level	Level	Level	3H:1V				
0 psf	150 psf	0 psf	0 psf				
0g	0g	0.20g	0g				
2.0 ft.	10.5 ft.	12.0 ft.	9.0 ft.				
3.5 ft.	10.5 ft.	13.5 ft.	10.5 ft.				
5.0 ft.	13.5 ft.	13.5 ft.	13.5 ft.				
8.0 ft.	16.5 ft.	15.0 ft.	16.5 ft.				

24-86 & 24-62 base units

Level Level Level 150 psf 0 psf 0 psf 0.20g 0g 0g

12.0 ft.	9.0 ft.	12.0 ft.	9.0 ft.
13.5 ft.	10.5 ft.	12.0 ft.	10.5 ft.
15.0 ft.	13.5 ft.	13.5 ft.	13.5 ft.
16.5 ft.	15.0 ft.	15.0 ft.	15.0 ft.

24-ME (12" extension) base unit

Bearing FS=2.0

3H:1V

0 psf

0g

/be	Backfill Slope	Level	Level	Level	3H:1\	
ί Τ _. Τ	Surcharge	0 psf	150 psf	0 psf	0 psf	
Š	Seismic PGA	0g	0g	0.20g	0g	
Clay, φ :	= 26°	15.0 ft.	12.0 ft.	15.0 ft.	10.5 f	
Sand, φ	= 30°	16.5 ft.	13.5 ft.	16.5 ft.	12.0 f	
Sand/G	ravel, φ = 34°	19.5 ft.	16.5 ft.	18.0 ft.	15.0 f	
Crushe	d Stone, $\phi = 38^{\circ}$	22.5 ft.	19.5 ft.	19.5 ft.	19.5 f	

24" CIP tail extension							
Level	Level	Level	3H:1V				
0 psf	150 psf	0 psf	0 psf				
0g	0g	0.20g	0g				
13.5 ft.	10.5 ft.	13.5 ft.	10.5 ft.				
15.0 ft.	13.5 ft.	15.0 ft.	12.0 ft.				
18.0 ft.	16.5 ft.	15.0 ft.	15.0 ft.				
19.5 ft.	18.0 ft.	16.5 ft.	18.0 ft.				

AASHTO LRFD

		24SF & 6SF units only						
/pe	Backfill Slope	Level	Level	Level	3H:1V			
ii 7,	Surcharge	0 psf	250 psf	0 psf	0 psf			
S	Seismic PGA	0g	0g	0.20g	0g			
Clay, φ = .	26°	7.5 ft.	4.5 ft.	7.5 ft.	6.0 ft.			
Sand, _φ =	30°	9.0 ft.	4.5 ft.	7.5 ft.	7.5 ft.			
Sand/Gra	$ vel, \phi = 34^{\circ}$	10.5 ft.	7.5 ft.	10.5 ft.	9.0 ft.			
Crushed	Stone, φ = 38°	12.0 ft.	9.0 ft.	12.0 ft.	10.5 ft.			
		2	4-86 & 24-6	62 base uni	ts			
'pe	Backfill Slope	2 Level	24-86 & 24-6	62 base uni Level	ts 3H:1V			
il Type	Backfill Slope Surcharge	2 Level 0 psf	24-86 & 24-6 Level 250 psf	52 base uni Level 0 psf	ts 3H:1V 0 psf			
Soil Type	Backfill Slope Surcharge Seismic PGA	2 Level 0 psf 0g	24-86 & 24-6 Level 250 psf 0g	52 base uni Level 0 psf 0.20g	ts 3H:1V 0 psf 0g			
⁹ d/Ω Clay, ¢ =	Backfill Slope Surcharge Seismic PGA 26°	2 Level 0 psf 0g 13.5 ft.	24-86 & 24-6 Level 250 psf 0g 10.5 ft.	52 base uni Level 0 psf 0.20g 13.5 ft.	ts 3H:1V 0 psf 0g 10.5 ft.			
^{θd} λ _J Clay, φ = Sand, φ =	Backfill Slope Surcharge Seismic PGA 26°	2 Level 0 psf 0g 13.5 ft. 16.5 ft.	4-86 & 24-6 Level 250 psf 0g 10.5 ft. 12.0 ft.	62 base uni Level 0 psf 0.20g 13.5 ft. 16.5 ft.	ts 3H:1V 0 psf 0g 10.5 ft. 12.0 ft.			
^{θd} /L ^{jio} S Clay, φ = Sand, φ = Sand/Gra	Backfill Slope Surcharge Seismic PGA 26° 30° vel, 	2 Level 0 psf 0g 13.5 ft. 16.5 ft. 18.0 ft.	4-86 & 24-6 Level 250 psf 0g 10.5 ft. 12.0 ft. 15.0 ft.	52 base uni Level 0 psf 0.20g 13.5 ft. 16.5 ft. 18.0 ft.	ts 3H:1V 0 psf 0g 10.5 ft. 12.0 ft. 15.0 ft.			

AASHTO LRFD – Vertical Face

		24SF & 6SF units only					
/be	Backfill Slope	Level	Level	Level	3H:1V		
ii TJ	Surcharge	0 psf	250 psf	0 psf	0 psf		
S	Seismic PGA	0g	0g	0.20g	0g		
Clay, φ =	= 26°	7.5 ft.	4.5 ft.	7.5 ft.	7.5 ft.		
Sand, ø	= 30°	7.5 ft.	4.5 ft.	7.5 ft.	7.5 ft.		
Sand/Gr	avel, φ = 34°	9.0 ft.	7.5 ft.	9.0 ft.	9.0 ft.		
Crushed	Stone, $\phi = 38^{\circ}$	10.5 ft.	7.5 ft.	10.5 ft.	10.5 ft.		
24-86 & 24-62 hase units							
		24-00 & 24-02 Dast units					

/be	Backfill Slope	Level
<i>ii</i> 7,	Surcharge	0 psf
	Seismic PGA	0g
Clay, φ = 26°		13.5 ft
Sand, $\phi = 30^\circ$	þ	15.0 ft
Sand/Gravel	, φ = 34°	15.0 ft
Crushed Sto	ne, φ = 38°	16.5 ft

Э	Level	Level	Level	3H:1V				
Э	0 psf	250 psf	0 psf	0 psf				
4	0g	0g	0.20g	0g				
	13.5 ft.	10.5 ft.	13.5 ft.	10.5 ft.				
	15.0 ft.	12.0 ft.	15.0 ft.	12.0 ft.				
	15.0 ft.	13.5 ft.	15.0 ft.	13.5 ft.				
	16.5 ft.	13.5 ft.	16.5 ft.	15.0 ft.				

Load Case 1 - Level Backfill

(Battered Face)

Backslope: nearly level (or sloping away from wall) **Surcharge:** 25 psf (nominal surcharge/snow load) Based on IBC safety factors, 1.5 for sliding/overturning

Cohesive Backfill*		Total Wall Height (feet)				
φ=26°, c=100psf, γ=125pcf	3.0	4.5	6.0	7.5	9.0	10.5
7th Course						
6th Course						
5th Course				6-28		
4th Course			6-28	6-28		
3rd Course		6-28	6-28	6SF		
2nd Course	6-28	6-28	6SF	6SF		
Bottom Course	6-28	6-28	6SF	6SF		

Coarse Sand Backfill*		Total Wall Height (feet)				
φ=32°, c=0psf, γ=125pcf	3.0	4.5	6.0	7.5	9.0	10.5
7th Course						6-28
6th Course					6-28	6-28
5th Course				6-28	6-28	6-28
4th Course			6-28	6-28	6-28	6SF
3rd Course		6-28	6-28	6-28	6SF	6SF
2nd Course	6-28	6-28	6-28	6SF	6SF	6SF
Bottom Course	6-28	6-28	6-28	6SF	6SF	6SF

*design for soil within 1 foot of heel, extending up at 1H:1V slope, assumes clay foundation soil

Sand Backfill*	Total Wall Height (feet)					
φ=30°, c=0psf, γ=125pcf	3.0	4.5	6.0	7.5	9.0	10.5
7th Course						
6th Course					6-28	
5th Course				6-28	6-28	
4th Course			6-28	6-28	6-28	
3rd Course		6-28	6-28	6-28	6SF	
2nd Course	6-28	6-28	6-28	6SF	6SF	
Bottom Course	6-28	6-28	6-28	6SF	6SF	

*design for soil within 1 foot of heel, extending up at 1H:1V slope, assumes sand foundation soil

*design for soil within 1 foot of heel, extending up at 1H:1V slope, assumes sand foundation soil

Gravel Backfill*	Total Wall Height (feet)					
ϕ =34°, c=0psf, γ =125pcf	3.0	4.5	6.0	7.5	9.0	10.5
7th Course						6-28
6th Course					6-28	6-28
5th Course				6-28	6-28	6-28
4th Course			6-28	6-28	6-28	6-28
3rd Course		6-28	6-28	6-28	6-28	6SF
2nd Course	6-28	6-28	6-28	6-28	6SF	6SF
Bottom Course	6-28	6-28	6-28	6SF	6SF	6SF

*design for soil within 1 foot of heel, extending up at 1H:1V slope, assumes sand foundation soil

Landscape Design Tables

11/3/16

Load Case 2 - Parking Lot Surcharge

(Battered Face)

Backslope: nearly level (or sloping away from wall)Surcharge: 150 psf (parking lot, set back min 2 feet behinds)Based on IBC safety factors, 1.5 for sliding/overturning

Cohesive Backfill*	Total Wall Height (feet)					
φ=26°, c=100psf, γ=125pcf	3.0	4.5	6.0	7.5	9.0	10.5
7th Course						
6th Course						
5th Course						
4th Course			6-28			
3rd Course		6-28	6-28			
2nd Course	6-28	6-28	6SF			
Bottom Course	6-28	6-28	6SF			

Coarse Sand Backfill* Total Wall Height (feet) ϕ =32°, c=0psf, γ =125pcf 6.0 7.5 3.0 4.5 9.0 10.5 7th Course - -6th Course - -- -6-28 5th Course - -- -4th Course 6-28 6-28 - -- -6-28 6-28 6-28 3rd Course - -- -6-28 6-28 6-28 6SF 2nd Course - -- -**Bottom Course** 6-28 6-28 6SF 6SF - -- -

Landscape Design Tables

11/3/16

*design for soil within 1 foot of heel, extending up at 1H:1V slope, assumes clay foundation soil

Sand Backfill*	Total Wall Height (feet)					
φ=30°, c=0psf, γ=125pcf	3.0	4.5	6.0	7.5	9.0	10.5
7th Course						
6th Course						
5th Course				6-28		
4th Course			6-28	6-28		
3rd Course		6-28	6-28	6-28		
2nd Course	6-28	6-28	6-28	6SF		
Bottom Course	6-28	6-28	6SF	6SF		

*design for soil within 1 foot of heel, extending up at 1H:1V slope, assumes sand foundation soil

*design for soil within 1 foot of heel, extending up at 1H:1V slope, assumes	sand foundation soil
--	----------------------

Gravel Backfill*	Total Wall Height (feet)					
ϕ =34°, c=0psf, γ =125pcf	3.0	4.5	6.0	7.5	9.0	10.5
7th Course						
6th Course					6-28	
5th Course				6-28	6-28	
4th Course			6-28	6-28	6-28	
3rd Course		6-28	6-28	6-28	6SF	
2nd Course	6-28	6-28	6-28	6SF	6SF	
Bottom Course	6-28	6-28	6-28	6SF	6SF	

*design for soil within 1 foot of heel, extending up at 1H:1V slope, assumes sand foundation soil

Not commonly used due to computational effort.

"Fine, we'll create a solution ourselves."

Defining Complex Boundary Conditions

STONE

SYSTEMS

Wall Configuration

w (in)

44.0

44.0

44.0

62.0

62.0

backfill height

exposed height

Aggregate Unit Fill

Retained Soil

h (ft)

1.50

3.00

3.00

3.00

10.50

10.50 feet

9.75 feet

125 pcf

110 pcf

s

©

32 deg

unit

6

24

24

24-62

STRONG

Notes

face

12.0

8.0

4.0

0.0

12.0

Ss

k_b

52 psf

0.80 ft

4.14 ft

0.89 ft

3.96 ft

3000

2500

2000

1500

1000

500

0

(qI)

Resultant

0.03

Stone Strong / Paraweb

- Conforms to AASHTO standards
- Innovative MSE system
- Polyester yarn bundles encased in tough and durable polyethylene sheath
- Positive connection
- Stable face

Interaction Testing Reports

24SF Block & 6SF Block

Interaction Testing Report

6 SF Units with Synteen Geogrids

Stone Strong Systems Lincoln, Nebraska

Prepared for: Stone Strong Systems 3801 Union Drive, Suite 102 Lincoln, Nebraska 68516

May 27, 2005 TG Project No. 02546.2

Interaction Testing Report

24 SF Units with Synteen Geogrids

Stone Strong Systems Lincoln, Nebraska

Prepared for: Stone Strong Systems 3801 Union Drive, Suite 102 Lincoln, Nebraska 68516

September 17, 2004 TG Project No. 02546.2

THE SOLUTIONS

RESIDENTIAL

Safety and Risk Mgmt.	Department of Facilities and Fleet Management
Purchasing Division 432.685.7234 Fax 685.0523	Post Office Box 1152 Midland, Texas 79702-1152

Warehouse 432.685.7244 Fax 432.686.1648 432.685.7460

Facilities Services 432.685.7271

Fleet Services

432.685.7455

Service Center

March 1, 2010

Stone Strong Systems Attn: Jody DuBois P. O. Box 835 Justin, TX 76247

Subject: Annual Purchase Agreement, PA0310-10, for Precast Concrete Retaining Wall Blocks

Dear Mr. DuBois:

Attached you will find two copies of the purchase agreement transmitted previously with the subject Request for Sealed Bid.

Please execute and **notarize** both purchase agreement copies and return them to this office as soon as possible.

Upon receipt of all information in an acceptable manner, we shall execute the duplicate copies of the agreement and return one copy for your files.

Please contact this office if you have any questions.

Sincerely,

illi for-

Eddie Price, C.P.M. Purchasing Agent

MATERIALS MANAGEMENT DIVISION • 901-B TEXAS STREET • DENTON, TEXAS 76209 940.349.7100 • FAX 940.349.7302

August 19, 2014

Jody DuBois Stone Strong of Texas PO Box 835 Justin, TX 76247 jody@stonestrongoftexas.com

Ref: File 4834- Renewal of Contract for Retaining Wall Blocks

Dear Jody:

The City of Denton would like to renew its contract with Stone Strong of Texas for the above referenced File for an additional one-year period through October 18, 2015, if agreed to by both parties, with all prices, terms and conditions remaining the same. If your company is in agreement, please sign a copy of this letter and return it to me.

Thank you for your continued interest in the City of Denton. If you have any questions, please contact me.

Regards,

Why put Tarbo, crim, com

Elton D. Brock, MBA, CTPM, CTCM, C.P.M. Purchasing Manager

Authorized Rep.

8/20/2014 Date

"Dedicated to Quality and Service"

Bridge Abutments Ulster County | Kingston, New York

Hybrid Applications

SYSTEMS

THE SOLUTION